Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge.

نویسندگان

  • Aurélien Boisson-Dernier
  • Sucharita Roy
  • Konstantinos Kritsas
  • Monica A Grobei
  • Miloslawa Jaciubek
  • Julian I Schroeder
  • Ueli Grossniklaus
چکیده

The precise delivery of male to female gametes during reproduction in eukaryotes requires complex signal exchanges and a flawless communication between male and female tissues. In angiosperms, molecular mechanisms have recently been revealed that are crucial for the dialog between male (pollen tube) and female gametophytes required for successful sperm delivery. When pollen tubes reach the female gametophyte, they arrest growth, burst and discharge their sperm cells. These processes are under the control of the female gametophyte via the receptor-like serine-threonine kinase (RLK) FERONIA (FER). However, the male signaling components that control the sperm delivery remain elusive. Here, we show that ANXUR1 and ANXUR2 (ANX1, ANX2), which encode the closest homologs of the FER-RLK in Arabidopsis, are preferentially expressed in pollen. Moreover, ANX1-YFP and ANX2-YFP fusion proteins display polar localization to the plasma membrane at the tip of the pollen tube. Finally, genetic analyses demonstrate that ANX1 and ANX2 function redundantly to control the timing of pollen tube discharge as anx1 anx2 double-mutant pollen tubes cease their growth and burst in vitro and fail to reach the female gametophytes in vivo. We propose that ANX-RLKs constitutively inhibit pollen tube rupture and sperm discharge at the tip of growing pollen tubes to sustain their growth within maternal tissues until they reach the female gametophytes. Upon arrival, the female FER-dependent signaling cascade is activated to mediate pollen tube reception and fertilization, while male ANX-dependent signaling is deactivated, enabling the pollen tube to rupture and deliver its sperm cells to effect fertilization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ANXUR1 and 2, Sister Genes to FERONIA/SIRENE, Are Male Factors for Coordinated Fertilization

In sexual reproduction, proper communication and cooperation between male and female organs and tissues are essential for male and female gametes to unite. In flowering plants, female sporophytic tissues and gametophytes direct a male pollen tube toward an egg apparatus, which consists of an egg cell and two synergid cells. The cell-cell communication between the pollen tube and the egg apparat...

متن کامل

TURAN and EVAN Mediate Pollen Tube Reception in Arabidopsis Synergids through Protein Glycosylation

Pollen tube (PT) reception in flowering plants describes the crosstalk between the male and female gametophytes upon PT arrival at the synergid cells of the ovule. It leads to PT growth arrest, rupture, and sperm cell release, and is thus essential to ensure double fertilization. Here, we describe TURAN (TUN) and EVAN (EVN), two novel members of the PT reception pathway that is mediated by the ...

متن کامل

The Role of LORELEI in Pollen Tube Reception at the Interface of the Synergid Cell and Pollen Tube Requires the Modified Eight-Cysteine Motif and the Receptor-Like Kinase FERONIA.

In angiosperms, pollen tube reception by the female gametophyte is required for sperm release and double fertilization. In Arabidopsis thaliana lorelei (lre) mutants, pollen tube reception fails in most female gametophytes, which thus remain unfertilized. LRE encodes a putative glycosylphosphatidylinositol (GPI)-anchored surface protein with a modified eight-cysteine motif (M8CM). LRE fused to ...

متن کامل

AP1G mediates vacuolar acidification during synergid-controlled pollen tube reception.

Double fertilization in angiosperms requires the delivery of immotile sperm through pollen tubes, which enter embryo sacs to initiate synergid degeneration and to discharge. This fascinating process, called pollen tube reception, involves extensive communications between pollen tubes and synergids, within which few intracellular regulators involved have been revealed. Here, we report that vacuo...

متن کامل

Pollen tube development and competitive ability are impaired by disruption of a Shaker K(+) channel in Arabidopsis.

Sexual reproduction in plants requires elongation of the pollen tube through the transmitting tissues toward the ovary. Tube growth rate is a major determinant of pollen competitive ability. We report that a K(+) channel of the Shaker family in Arabidopsis, SPIK, plays an important role in pollen tube development. SPIK was found to be specifically expressed in pollen. When SPIK was heterologous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 136 19  شماره 

صفحات  -

تاریخ انتشار 2009